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ABSTRACT

We solve the modular isomorphism problem for small group rings, i.e., we

determine, for a given finite p-group H, precisely which central Frattini

extensions of H give rise to isomorphic small group rings over the field

with p elements.

1. Introduction

Let G be a finite p-group, where p is an arbitrary rational prime. Any

descending central series

G = G1 ≥ G2 ≥ · · · ≥ Gl 
 Gl+1 = 1

with G2 = Φ(G) = [G,G]Gp, the Frattini subgroup ofG, and elementary abelian

sub-quotients Gi/Gi+1, allows us to describe G as being successively built from

extensions E1 , . . . , E l−1 :E i : 1 −→ Gi+1/Gi+2 −→ G/Gi+2 −→ G/Gi+1 −→ 1.
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Note that, by assumption, Gi+1/Gi+2 is a central elementary abelian subgroup

contained in the Frattini subgroup of G/Gi+2, which shall be expressed shortly

by saying that E i is a central Frattini extension.

An important example of such a central series is the Brauer–Jennings–

Zassenhaus series G = M1(G) ≥ M2(G) ≥ · · · (see [13] and Section 3). It

appears naturally in the context of modular group algebras, since Mn(G) is the

so-called n-th dimension subgroup of G:

Mn(G) = G ∩ (1 + I(kG)n),

where I(kG) denotes the augmentation ideal of the modular group ring kG, with

k = Fp being the field with p elements.

A group basis of kG is a subgroup of the group of units of kG which consti-

tutes a basis of the vector space kG over k. The Modular Isomorphism Problem

(usually abbreviated as MIP) asks whether, for a given p-group G, a group basis

of kG must be necessarily isomorphic to G.

The results obtained by Passi and Sehgal in [14] and Ritter and Sehgal in [16]

say — to be read as successive improvements — that the isomorphism classes

of the sub-quotients

Mn(G̃)/Mn+1(G̃), Mn(G̃)/Mn+2(G̃), Mn(G̃)/M2n+1(G̃)

are independent of the chosen group basis G̃ of kG.

They seem to suggest that an inductive approach to (MIP) should be possible,

a point of view taken in the recent attack of Borge and Laudal on (MIP) (see

[2, 3], as well as the discussion of this approach given by the authors in [8,

§3]). Trying to substantiate the attempt of [2, 3] was the starting point of the

investigation that led to the present paper.

It appears natural to consider for a fixed p-groupH the class F(H) of all short

exact sequences of groupsE : 1 −→ V −→ E −→ H −→ 1,

where V is a central elementary abelian p-subgroup contained in the Frattini

subgroup of E (see Definition 4.1). The small group ring of E with respect

to V is the quotient

s(E, V ) =
kE

I(kV )I(kE)
.

Associated to E there is a short exact sequence of k-algebras, the sequence for

the small group ring (see Section 3):S: 0 −→ {V − 1} −→ s(E, V ) −→ kH −→ 0.
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We introduce two equivalence relations on F(H) — isomorphism and

s-equivalence — which essentially describe isomorphisms between group

sequences E or, rather, small group ring sequences S (see Definition 4.3).

The main result of the paper, Theorem 4.4, describes the s-equivalence classes

of extensions in F(H) in terms of an action of the outer automorphism group

Out(kH) on the kernel V of a certain ‘universal’ extension E , given in (4.3).

There is a natural inclusion Out(H) ⊆ Out(kH), and restriction of the action

to Out(H) yields precisely the isomorphism classes of extensions in F(H). This

solves, in view of Corollary 3.7, the isomorphism problem for small group rings

in an optimal way.

With the guide of Theorem 4.4, it is fairly easy to verify that for the dihedral

group D8 of order 8, the (non-isomorphic) central Frattini extensions in F(D8 )

with middle terms isomorphic to the dihedral, semi-dihedral and generalized

quaternion group of order 16 give rise to isomorphic small group rings, and to

construct two pairs of central Frattini extensions in F(D8 ) with non-isomorphic

middle groups of order 32 which give rise to isomorphic small group rings (see

Example 6.3). Although announced in the literature (see the (foot)note (e)

contained in the remark following Theorem 6.25 in [21]), such examples do not

seem to have been published until now.

For the orientation of the reader, we briefly describe the contents of each

section.

Section 2 contains the fairly elementary group-theoretical Lemma 2.1 on the

lifting of group homomorphisms in a special situation, which, as a consequence,

allows the — completely cohomology-free — introduction of the key concept of

obstruction space (see Proposition 2.2). The reader interested in an alterna-

tive approach to this concept may wish to consult [8].

Besides giving a short introduction into small group rings, the purpose of Sec-

tion 3 is twofold: first, to transfer the concept of obstruction spaces to the setting

of small group rings (see Corollary 3.2), and second, to show that s-equivalence

of central Frattini extensions as introduced in Section 4 (see Definition 4.3) is

nothing but isomorphism of small group rings (see Corollary 3.7).

In Section 4 we introduce central Frattini extensions (see Definition 4.1) and

study the class F(H) of all such extensions with fixed finite factor p-group

H with respect to two closely related equivalence relations: isomorphism and

s-equivalence (see Definition 4.3). A key observation (see Lemma 4.2) relates

obstruction spaces to sequences in F(H). The main Theorem 4.4 may be in-

terpreted as the construction of all classes of sequences in F(H) as appropriate
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quotients of a certain ‘universal’ central Frattini extension (4.3). Thereby, the

action of the groups Out(H) and Out(kH) on the subspaces U of the kernel V of

this extension, which is described in detail in Section 4, identifies isomorphic re-

spectively s-equivalent sequences by interpreting the subspaces U as obstruction

spaces in the group respectively small group ring setting.

Section 5 is mainly devoted to the formulation of a new proof of the result of

Röhl [20] in our setting (see Theorem 5.8), thus relating it to small group rings.

Roughly speaking, the theorem is about the modular isomorphism problem for

p-groups allowing a certain type of presentation. En passant, we derive a couple

of (hopefully) useful results, from which Lemma 5.7 and Corollary 5.9 might be

highlighted.

It might be helpful to complement the reading of Sections 3 and 4 with look-

ing at the examples from Section 6. Example 6.1 contains all of what can be

said about the simple (and exceptional) case of cyclic groups, giving also an

easy, explicit example of small group rings. Example 6.2 aims at describingF(H) for H elementary abelian. It turns out that in this case isomorphism

and s-equivalence classes coincide, and their explicit description is reduced to

a combinatorial problem related to certain GL(Fp )-modules. Finally, due to a

‘strictly larger’ action of Out(F2D8) when compared to the action of Out(D8)

(D8 denoting the dihedral group of order 8), we are able to construct in Ex-

ample 6.3 non-isomorphic groups having isomorphic modular small group rings

with quotient algebra F2D8. The reader is invited to extend this family of ex-

amples by working with GAP [7], our favourite computer algebra system in this

context.

2. A lemma about lifting of group homomorphisms

Let G be a finite group. We shall consider short exact sequences E of finite

groups together with homomorphisms ϕ from G to the end term of the sequence:

(2.1) Eϕ : 1 // N // E // E/N // 1

G

ϕ

OO

We shall refer to Eϕ just as a diagram. We will say that ϕ lifts modulo M , where

M is a normal subgroup of E contained in N , if there exists a homomorphism

ϕ̂: G −→ E/M such that the following diagram, where π: E −→ E/M is the
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natural map, is commutative:

(2.2) E/M // E/N // 1

E

π

OO

// E/N // 1

G

ϕ̂

44444444

ZZ4444444

ϕ

OO

Then, the homomorphism ϕ̂ will be called a lifting of ϕ.

Sometimes it is possible to make a statement about the collection of all normal

subgroups modulo which ϕ lifts. We show:

Lemma 2.1: Suppose that a diagram Eϕ is given, as shown in (2.1), and that

N is a direct product of minimal normal subgroups of E. Then there exists a

unique normal subgroup U of E contained inN which is minimal in the following

sense: ϕ can be lifted modulo U , and any other normal subgroup modulo which

ϕ lifts contains U .

Proof: We begin with a preliminary remark about the normal subgroups of

E which are contained in N : If M is such a subgroup, M 6= 1, and N =

N1 × · · · ×Nr with minimal normal subgroups Ni of E, then we have, possibly

after a renumbering of the Ni, that N = M × N1 × · · · × Ns for some s < r.

This can be proved by induction on the order of M as follows. First of all,

the projection of M onto some Ni0 is surjective. Let L be the kernel of this

surjection. If L = 1, then N is the direct product of M and the Ni, i 6= i0.

Otherwise L 6= 1, and we may assume by induction on |M | that N = L×K with

K = N1 × · · · ×Ns+1, some s < r − 1, after a suitable renumbering. Note that

M = L×(M ∩K) and that M∩K is a minimal normal subgroup of E contained

in K. As before (the case L = 1), we have K = (M ∩K)×N1 × · · · ×Ns after

renumbering, which proves the claim. In particular, any normal subgroup M of

E contained in N has a direct complement in N which is normal in E.

Now let U be a normal subgroup of E contained in N such that ϕ lifts

modulo U , but not modulo any normal subgroup which is properly contained

in U (possibly U = N). By way of contradiction, suppose that V is a normal

subgroup of E contained in N such that ϕ lifts modulo V , but that V does not

contain U .

We assume without lost of generality that the injection N −→ E is in fact

inclusion.
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If U ∩ V 6= 1, we may consider the diagram

1 // N/U ∩ V // E/U ∩ V // E/N // 1.

G

ϕ

OO

Then ϕ lifts modulo U/U ∩ V and modulo V/U ∩ V . By induction on the order

of E, we can assume that ϕ lifts modulo the intersection of these subgroups,

i.e., that there exists a lifting ϕ̂: G −→ E/U ∩ V of ϕ, contradicting our choice

of U since U ∩ V is a proper subgroup of U .

Hence we can assume that U ∩ V = 1. Then there exists a normal subgroup

W of E such that N = U × V ×W . Let α: G −→ E/U and β: G −→ E/V be

liftings of ϕ. Let σ be the composite of α and the natural map E/U −→ E/UV ,

and let τ be the composite of β and the natural map E/V −→ E/UV . If

π: E/UV −→ E/N is the natural map, then σπ = τπ since both σπ and τπ are

the composite of ϕ and the inverse of the automorphism of E/N which the given

surjection E −→ E/N induces. At last, let β̄ denote the composite of β and

the natural map E/V −→ E/VW . Now consider the following commutative

diagram, in which each square is a pullback diagram where the maps are the

natural ones. Note that pullback diagrams have a universal mapping property

(as described in [6, §3, Exercise 11] for pullback diagrams of modules).

G
β̄

**

ψ

**TTTTTTTTTTTT

τ

!!

ϕ̂
K

K
K

%%K
K

K
K

σ

''

α

��

��

E //

��

E/V //

��

E/VW

��
E/U //

��

E/UV π
//

π

��

E/N

E/UW // E/N

As σπ = τπ, we obtain a homomorphism ψ: G −→ E/V such that the com-

posite of ψ with the natural map E/V −→ E/VW is β̄, and the composite of

ψ with the natural map E/V −→ E/UV is σ. It follows that α and ψ induce

a homomorphism ϕ̂: G −→ E, which is a lifting of ϕ. Consequently U = 1,

contradicting our assumption that V does not contain U , and the lemma is

proved.
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The hypothesis of Lemma 2.1 is naturally satisfied if N is an elementary

abelian p-group (for some prime p) which is contained in the center of E. In

this case, we shall write obspaceEϕ for the subgroup U described in Lemma 2.1

as we think of the vector space U as an “obstruction space.” As we shall deal

only with such extensions, we record this conclusion in a separate proposition:

Proposition 2.2 (and Definition): Let Eϕ be a diagram as shown below,

where V is an elementary abelian p-group contained in the center of E (and

V →֒ E denotes inclusion). Then among the subgroups U of V which admit a

lifting, as shown below, there is a unique smallest one, called obspaceEϕ .

1 // V/U � � // E/U // H // 1Eϕ : 1 // V
� � //

OO

E //

OO

H // 1

G

ϕ

OO

ϕ̂

1
1
1
1
1
1
1

XX1111111

The concept of obstruction spaces for diagrams of p-groups was recently picked

up by Borge and Laudal in their attack on the modular isomorphism problem

(see [3]). In [8], the authors presented an elementary cohomological argument

giving obspace Eϕ as the image of a certain homomorphism which is naturally

assigned to a 2-cocycle associated with Eϕ , closely following the path marked

in [3, Section 2].

3. A glance on algebras: The small group ring

The group-theoretical Proposition 2.2 has an analogue on the algebra-side. We

do not go into details but present some ideas by means of the “small group

ring”. Originally, the small group ring was introduced to deal with problems for

integral group rings, leading to Whitcomb’s result [23]. See [18, 1.1.8] for more

details.

Let E be a finite group which has, for some prime p, an elementary abelian

normal p-subgroup V . Set k = Fp , the field with p elements. We write I(kE)

for the augmentation ideal of kE (the elements of kE with sum-of-coefficients

equal to zero). Note that I(kV )kE is the kernel of the natural homomorphism

kE −→ kE/V . There is an isomorphism of abelian groups

(3.1) V ∼=
I(kV )kE

I(kV )I(kE)
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sending v ∈ V to the coset of v − 1. Indeed, this is a surjective homomorphism

since vw − 1 = (v − 1) + (w − 1) + (v − 1)(w − 1) for all v, w ∈ V . Note that

I(kV )kE has dimension |E|− |E/V |, so if T is a system of coset representatives

to V in E then {(v − 1)t| 1 6= v ∈ V, t ∈ T } is a k-basis of I(kV )kE and we

obtain a homomorphism I(kV )kE −→ V of vector spaces by sending (v−1)t to

v. Since the kernel of this homomorphism contains I(kV )I(kE), (3.1) follows.

For U ≤ V , we suggestively write {U − 1} for the image of U under the

isomorphism (3.1). The small group ring of E over k associated with V is

the quotient

s(E, V ) =
kE

I(kV )I(kE)
.

Thus we have an exact sequenceS: 0 −→ {V − 1} −→ s(E, V ) −→ kE/V −→ 0.

Since {V − 1} is an ideal of square zero, we also have an exact sequence of

multiplicative groups of units:

1 −→ V −→ s(E, V )× −→ (kE/V )× −→ 1.

Note that the pre-image of E/V in s(E, V )× is precisely E.

Let U ≤ V . Then U is a normal subgroup of E if and only if {U−1} is an ideal

of s(E, V ). Furthermore, if one of these conditions hold, we have a commutative

diagram, in which the vertical maps are the natural isomorphisms:

(3.2) 0 // {V/U − 1} // s(E/U, V/U) // kE/V // 0

0 // {V−1}
{U−1}

//

OO

s(E,V )
{U−1}

//

OO

kE/V // 0

Set H = E/V . For a finite group G, consider the exact sequence S for the

small group ring together with a homomorphism ϕ from kG to the end term of

the sequence:Sϕ: 0 // {V − 1} // s(E, V )
κ // kH // 0

kG

ϕ

OO

Assume that a group basis G̃ of kG is mapped under ϕ to a group basis H̃ of

kH , and let Ẽ be the pre-image κ−1(H̃) of H̃ in s(E, V )×. Switching to units,
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we get a diagram for groups:Ẽϕ : 1 // V // Ẽ
κ // H̃ // 1

G̃

ϕ

OO

In the present case, the following simple lemma describes the transformation

between lifting group and algebra homomorphisms.

Lemma 3.1: With the notation as above, let U be a normal subgroup of E

contained in V . Then the following are equivalent:

(i) There exists an algebra homomorphism α making the following diagram

commutative:

0 // {V−1}
{U−1}

// s(E,V )
{U−1}

// kH // 0

kG

α

bbEEEEEEEE
ϕ

OO

(ii) There exists a group homomorphism β making the following diagram com-

mutative:

1 // V/U // Ẽ/U // H̃ // 1

G̃

β

aaBBBBBBBB
ϕ

OO

Proof: Note that Ẽ/U embeds naturally into the group of units of

s(E, V )/{U − 1}.

(i)=⇒(ii): Let Q be the pre-image of G̃α in s(E, V ). By commutativity,

Qκ = H̃ , so Q ≤ Ẽ, and we obtain β as a composite map, as shown in the left

diagram below.

Ẽ/U // H̃

imα //

OO

H̃

G̃

α

aaCCCCCCCCC

β

XX1
1
1
1
1
1
1
1
ϕ

OO

s(E,V )
{U−1}

// kH

kẼ/U //

OO

kH̃

kG

β

ccFFFFFFFF
ϕ

OO

α

YY3
3

3
3

3
3

3
3



72 M. HERTWECK AND M. SORIANO Isr. J. Math.

(ii)=⇒(i): Since kG = kG̃ and kH = kH̃ , we obtain α as a composite map, as

shown in the right diagram above.

From Proposition 2.2 and Lemma 3.1 we immediately obtain the following

two corollaries.

Corollary 3.2: Suppose that V is central in E. Among the ideals I of s(E, V )

contained in {V −1} for which there exists an algebra homomorphism α making

the following diagram commutative:

0 // {V − 1}/I // s(E, V )/I // kH // 0,

kG

α

eeJJJJJJJJJ
ϕ

OO

there exists a unique minimal one (with respect to inclusion), namely I = {U−1}

with U = obspace Ẽϕ .

Corollary 3.3: Suppose that V is central in E, and that Gϕ = H , so that

we have another diagramEϕ : 1 // V // E // H // 1

G

ϕ

OO

Then obspaceEϕ = obspace Ẽϕ .

Though the groups G and G̃ (a priori) might be assumed to be non-

isomorphic, this should not come as a surprise since we may very well have

E 6= Ẽ.

In the remaining part of this section we consider isomorphisms between small

group rings s(G,A) and s(H,B) of p-groups G and H associated with central

elementary abelian subgroups A and B, and address the question whether

{A − 1} must be mapped to {B − 1}. Apart from some minor exceptions,

the answer will be in the affirmative. We begin with:

Lemma 3.4: Let G be a finite p-group, and let A be a central elementary abelian

subgroup of G with 1 6= A < G. Let T be a set of coset representatives of A

in G, and let τ be the image of
∑

t∈T t in s(G,A). Then the annihilator of the

radical of s(G,A) is {A−1}+kτ unless G contains an element of order p|G/A|,

when the annihilator is {A− 1} (note that in the latter case, G/A is cyclic).
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Proof: Let π: kG −→ s(G,A) be the natural map, let m ∈ kG, and suppose

that mπ annihilates the radical I(kG)π of s(G,A). Write m =
∑

t∈T mtt with

all mt in kA. We have
∑

tmtt ≡
∑

t ε(mt)(t − 1) +
∑

tmtmod I(kA)I(kG),

where ε denotes the augmentation map. Since ε(m) = 0 (otherwise m would be

a unit), (
∑

tmt)π ∈ {A − 1}. Note that {A − 1} annihilates the radical. Set

m̃ =
∑

t ε(mt)(t − 1). Then m̃π annihilates the radical, so if κ: kG −→ kG/A

denotes the natural map, then m̃κ annihilates I(kG/A). It follows that m̃κ ∈

k(
∑

x∈G/A x), and m̃π ∈ {A−1}+kτ where τ = (
∑

t∈T t)π as above. It remains

to check when τ annihilates the radical. Let g ∈ G. Then (
∑

t t)g =
∑

t att

with all at ∈ A. Using the formula xy − 1 = (x− 1) + (y − 1) + (x− 1)(y − 1),

we obtain modulo I(kA)I(kG)

(3.3)
∑

t

att =
∑

t

(att− 1) ≡
∑

t

(at − 1) +
∑

t

(t− 1) ≡

( ∏

t

at

)
− 1 +

∑

t

t.

The product
∏
t at is the image of g under the transfer homomorphism G −→ A

(see [17, 10.1]), and it follows that
∏
t at 6= 1, i.e., τ(gπ) 6= τ , if and only if g

has order p|G/A| (cf. [17, 10.1.2]), and the lemma is proved.

We briefly introduce the notion of “Zassenhaus ideals”, which will be needed

in the proof of the next lemma. Let G be an arbitrary group. The Lie powers

of the augmentation ideal I(kG) are the (two-sided) ideals ∆(i)(kG) defined

inductively by

∆(1)(kG) = I(kG), ∆(i+1)(kG) = [I(kG),∆(i)(kG)]kG,

where [M,N ] denotes the k-submodule generated by all elements mn − nm

with m ∈ M and n ∈ N . Following [14, 24] we define the Zassenhaus ideals

Hn(kG) of kG for n ≥ 1 by setting

(3.4) Hn(kG) =
∑

ipj≥n

∆(i)(kG)p
j

+ I(kG)n+1.

These ideals have an alternative description in terms of the Brauer–Jennings–

Zassenhaus series for G, called M-series by Jennings (see [13], or [15, p. 481]):

M1(G) = G, and for n ≥ 2

(3.5) Mn(G) = 〈[G,Mn−1(G)],M⌈n/p⌉(G)p〉

where ⌈n/p⌉ is the smallest integer ≥ n/p. Jennings’ result is that

(3.6) Mn(G) = Dn(G),
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where the n-th dimension subgroup Dn(G) is defined by

Dn(G) = G ∩ (1 + I(kG)n).

Passi and Sehgal [14] showed that

(3.7)
Hn(kG) = I(kMn(G))kG + I(kG)n+1

= (Mn(G)− 1) + I(kG)n+1.

Now we are in a position to prove:

Lemma 3.5: Let G be a finite p-group with a proper normal subgroupA of order

p. If G is not a Klein’s four-group, and J is a 1-dimensional ideal in s(G,A)

such that s(G,A)/J is the group algebra of a finite group, then J = {A− 1}.

Proof: Let J be a 1-dimensional ideal in s(G,A) such that s(G,A)/J is the

group algebra of a finite group. As s(G,A) modulo its radical is isomorphic to

k, it follows that s(G,A)/J is isomorphic to kP for a p-group P . Let J0 be the

kernel of the natural homomorphism kG −→ s(G,A)/J , let π: kG −→ kG/J0

be the natural map, and fix an isomorphism θ: kG/J0 −→ kP . Suppose that

J 6= {A − 1}. Then (A − 1)π 6= 0. As {A − 1} annihilates the radical of

s(G,A), the image (A− 1)πθ annihilates the radical of kP , and it follows that

k(A − 1)πθ = kP̂ , where P̂ denotes the sum of the elements of P . We have

A ⊆ Mn(G) \ Mn+1(G) for some integer n; by (3.6), equivalently A − 1 ∈

I(kG)n \ I(kG)n+1.

Suppose that I(kP )n+1 6= 0, so that P̂ ∈ I(kP )n+1. Then A − 1 ⊆

I(kG)n+1 + J0. Note that J , as a 1-dimensional ideal in s(G,A), is con-

tained in the annihilator of the radical of s(G,A), so by Lemma 3.4 and (3.3),

J0 = I(kA)I(kG) + kσ where σ denotes the sum of a system of coset repre-

sentatives of A in G. It follows that A − 1 ⊆ I(kG)n+1 + kσ. Consequently

σ ∈ I(kG)n \ I(kG)n+1 and

(3.8) kσ + I(kG)n+1 = (A− 1) + I(kG)n+1.

However, we can choose a Jennings basis of I(kG) (see [13], or [15, Chapter 3,§3])

which, by [9, Theorem 7], contains the sum σ̃ of a system of coset representatives

of A in G, and by (3.3), σ̃ ∈ σ + (A− 1) + I(kG)n+1. We can also assume that

the Jennings basis contains a − 1 for some 1 6= a ∈ A. Then σ̃ and a − 1 are

linearly independent over I(kG)n+1 (see [15, Chapter 3, Lemma 3.5]), which

contradicts (3.8). Hence I(kP )n+1 = 0, and I(kP )n = kP̂ .
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We have shown that I(kG)n+1 is contained in J0, and that I(kG)n maps to a

1-dimensional ideal in kG/J0. Together with (3.7), it follows that the Zassen-

haus ideal Hn(kG) maps under π onto (A − 1)π, so Hn(kG)πθ = kP̂ . Fur-

thermore, Hn(kG)πθ = Hn(kP ) by (3.4) since I(kG)πθ = I(kP ). By (3.7),

Hn(kP ) = Mn(P ) − 1. Hence kP̂ = Mn(P ) − 1 and it follows that n = 1,

I(kP )2 = 0, kP = F2C2 (=group ring of a cyclic group of order 2), and

|G| = 4. Thus G is cyclic (by assumption), and J = {A − 1} since s(G,A) =F2C4/I(F2C4)
3 has only one ideal of dimension 1. This final contradiction proves

the lemma.

We note that the case of G being a Klein’s four-group must be excluded.

We also note that if G is a Klein’s four-group, then with A = G and B a

subgroup of order 2, we have s(G,A) ∼= s(G,B) as I(F2A)I(F2G) = I(F2G)2 =

I(F2B)I(F2G).

We finally record:

Proposition 3.6: Let G and H be finite non-cyclic p-groups, with central

elementary abelian proper subgroups A and B, respectively. Suppose that H/B

is not of order two. Then an isomorphism between s(G,A) and s(H,B), if

existing, maps {A− 1} onto {B − 1}.

Proof: Assume that we are given an isomorphism θ: s(G,A) −→ s(H,B). For

some set T of coset representatives of A in G, let τA be the image of
∑

t∈T t in

s(G,A), and define similarly τB ∈ s(G,B).

Suppose that A = 1 and B 6= 1. Then the annihilator of the radical of

s(G,A) (= kG) is 1-dimensional. Consequently {B − 1} is 1-dimensional and

τB does not annihilate the radical of s(H,B), since otherwise the annihilator

of the radical of s(H,B) would be at least 2-dimensional. By Lemma 3.4, it

follows that H is cyclic, contrary to our assumption. Thus we can assume that

A,B 6= 1.

Suppose that τA annihilates the radical of s(G,A) but τB does not annihilate

the radical of s(H,B). Then by Lemma 3.4, {A − 1}θ = {B̃ − 1} for some

subgroup B̃ of B of index p. By (3.2), it follows that kG/A ∼= s(H/B̃,B/B̃).

But kG/A has dimension |G/A| whereas s(H/B̃,B/B̃) has dimension 1+|H/B|,

which is impossible since p divides the first, but not the second number. Hence

we can assume, by Lemma 3.4, that both τA and τB annihilate the radicals.

By Lemma 3.4, θ maps {A−1}+kτA onto {B−1}+kτB. In particular, A and

B have the same order. There are subgroups Ã and B̃ of index p in A and B,

respectively, such that θ maps {Ã−1} onto {B̃−1}. By (3.2), θ induces an iso-
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morphism between the small group rings s(G/Ã,A/Ã) and s(H/B̃,B/B̃). The

image J of {A/Ã− 1} in s(H/B̃,B/B̃) is a 1-dimensional ideal, with quotient

isomorphic to the group algebra kG/A. By assumption, H/B̃ is not a Klein’s

four-group, so J = {B/B̃−1} by Lemma 3.5, and it follows that θ maps {A−1}

onto {B − 1}.

Corollary 3.7: Let G and H be finite p-groups, with central elementary

abelian subgroups A and B contained in the Frattini subgroups Φ(G) and Φ(H),

respectively. If G is cyclic, suppose that G and H have the same order. Then

an isomorphism between s(G,A) and s(H,B), if existing, maps {A − 1} onto

{B − 1}.

Proof: The radical of s(G,A) modulo its square is isomorphic to I(kG)/I(kG)2,

a quotient which is known to be isomorphic to G/Φ(G) (cf. [10, VI, Lemma 4.1]).

It follows that G and H are either both cyclic or non-cyclic. If H is non-cyclic,

then H/B is not of order two, and the statement follows from Proposition 3.6.

Otherwise G and H are cyclic of the same order, and the small group rings are

uniserial (see [9, Corollary 14] or [1, p. 26]), so the statement follows also in this

case.

4. Central Frattini extensions and the small group ring

Let H be a (fixed) finite p-group, and let

(4.1) 1 −→ R −→ F −→ H −→ 1

be any presentation with F free. Additionally, we assume that

(4.2) R ≤ [F, F ]F p

(this holds, for example, if F is free on a minimal generating set of H). We set

L = [F,R]Rp

and E = F/L, V = R/L, so that

(4.3) 1 // R/L // F/L // H // 1E : 1 // V // E // H // 1

is a central extension of H by the elementary abelian p-group V , and by (4.2),

V is contained in the Frattini subgroup Φ(E). We shall see (in Lemma 4.2) thatE is the ‘universal one’ among all extensions of H having these properties.
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Definition 4.1: We denote by F(H) the collection of all central extensions

1 −→ A −→ G −→ H −→ 1

with A an elementary abelian p-group whose image in G is contained in the

Frattini subgroup of G. (Such an extension might be called a central Frattini

extension.)

In this section, we give a description of the isomorphism classes of the ex-

tensions in F(H) in terms of an Out(H)-action on V , as well as a description

of a coarser equivalence relation related to the small group ring in terms of an

Out(kH)-action on V . (As before, k denotes the field with p elements.) We

begin with the following basic lemma.

Lemma 4.2: Suppose that an exact sequence in F(H) is given:

(4.4) 1 // A
ι // G

ϕ // H // 1.

Then G ∼= E/ obspaceEϕ , where

(4.5) Eϕ : 1 // V // E // H // 1.

G

ϕ

OO

More precisely, we have a commutative diagram in which all vertical maps are

isomorphisms:

1 // A
ι // G

ϕ // H // 1

1 // V/ obspaceEϕ //

OO

E/ obspaceEϕ //

OO

H // 1.

Proof: By the universal property of F , we have a commutative diagram

F
ψ

~~~~
~~

~~
~

��
1 // A

ι // G
ϕ // H //

��

1

1

Note that G is generated by Aι and Fψ. Since Aι ≤ Φ(G), and elements of

the Frattini subgroup are non-generators (see [17, 5.2.12]), it follows that ψ is
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surjective. Moreover, Rψ ≤ Aι implies that Lψ = [F,R]Rpψ = 1, so that we

have a factorization

E

~~~~
~~

~~
~

��
G

ϕ // H

Now consider the commutative diagram

1 1

1 // A //

OO

G
ϕ //

OO

H // 1Eϕ : 1 // V //

OO

E //

OO

H // 1

K
� ?

OO

K
� ?

OO

G

ϕ

OO

1

OO

1

OO

Set U = obspaceEϕ . By Proposition 2.2, U ≤ K. In particular, |G| = |E/K| ≤

|E/U |. The same argument as in the beginning of the proof shows that a lifting

G −→ E/U of ϕ is surjective, so |G| ≥ |E/U |. Thus U = K as desired, and the

final statement follows from the above diagram.

Next, we define two equivalence relations on F(H).

Definition 4.3: Two extensions

(4.6) 1 // Ã
ι̃ // G̃

ϕ̃ // H // 1,

1 // A
ι // G

ϕ // H // 1

from F(H) are isomorphic if there exists a commutative diagram

(4.7) 1 // Ã
ι̃ // G̃

ϕ̃ // H // 1

1 // A
ι //

OO

G
ϕ //

OO

H //

α

OO

1
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where the vertical maps are isomorphisms. Furthermore, we shall say that the

two extensions (4.6) are s-equivalent if we have a commutative diagram

(4.8) 0 // {Ã− 1} // s(G̃, Ãι̃)
ϕ̃ // kH // 0

0 // {A− 1} //

OO

s(G,Aι)
ϕ //

OO

kH //

α

OO

0

where the vertical maps are isomorphisms.

Certainly, isomorphic extensions are s-equivalent. If we consider short exact

sequences (4.6) from F(H) up to one of these equivalence relations, we can

assume (and will do) that the injections ι and ι̃ are in fact inclusions.

By Corollary 3.7, two extensions (4.6) from F(H) are s-equivalent if and only

if the associated small group rings s(G,A) and s(G̃, Ã) are isomorphic.

We shall define an action of Out(kH) on V = R/L = R/[F,R]Rp. As H is

a p-group, Out(H) naturally embeds into Out(kH), a fact which was observed

independently by Coleman [5] and Ward [22]. Then we will have the following

straightforward result.

Theorem 4.4: The isomorphism classes of extensions in F(H) are in bijection

with the Out(H)-orbits of subspaces of V , and the s-equivalence classes of ex-

tensions in F(H) are in bijection with the Out(kH)-orbits of subspaces of V .

Both correspondences are given as follows: The class of the extension (4.4) inF(H) corresponds to the orbit of obspace Eϕ , where the diagram Eϕ is given by

(4.5). Conversely, the orbit of U ≤ V corresponds to the class of

1 −→ V/U −→ E/U −→ H −→ 1.

The action of Out(kH): We shall first define the action of Out(H) on V ,

which can be done more easily. Let α ∈ Aut(H). By the universal property of

F , we have a commutative diagram

1 // R/L // F/L // H // 1

1 // R //

OO

F //

β

OO

H //

α

OO

1

From Rβ ⊆ R/L it is immediate that Lβ = [F,R]Rpβ = 1, and we obtain a
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‘lift’ α̂, i.e., a commutative diagram

1 // V // E // H // 1

1 // V //

OO

E //

α̂

OO

H //

α

OO

1

Note that α̂ ∈ Aut(E) since V ≤ Φ(E). Assume that for some γ ∈ Aut(E), we

have a commutative diagram

1 // V // E // H // 1

1 // V //

OO

E //

γ

OO

H // 1

This means that γ induces the identity on E/V . A simple computation using

that V is central of exponent p shows that γ fixes Φ(E) = [E,E]Ep, so in

particular V , element-wise. Thus we get a well-defined action of Aut(H) on V

by letting α act via a lift α̂. Inner automorphisms lift to inner automorphisms

which act trivially on V , so we really have an action of Out(H) on V .

Similarly, the action of Out(kH) on V is defined. Let α ∈ Aut(kH). By the

universal property of F , we have a commutative diagram

1 // V // s(E, V )× // (kH)× // 1

1 // 1 + I(kV )kE //

OO

(kE)× //

π

OO

(kH)× // 1

1 // R //

OO

F //

β

OO

H //

α

OO

1

The k-linear extension β: kF −→ kE maps I(kR)kF into I(kV )kE and I(kF )

into I(kE). Also note that V is a central elementary abelian p-subgroup of

s(E, V )×, so Lβπ = 1. Hence we get a lift α̂ such that

(4.9) 0 // {V − 1} // s(E, V ) // kH // 0

0 // {V − 1} //

OO

s(E, V ) //

α̂

OO

kH //

α

OO

0

is commutative. Let α̂−1 be a lift of α−1. Then Eα̂α̂−1 maps onto H under the

map s(E, V ) −→ kH , whence is a subgroup of E. Since V ≤ Φ(E), it follows

that Eα̂α̂−1 = E, and consequently α̂ ∈ Aut(s(E, V )).
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Assume that for some γ ∈ Aut(s(E, V )), we have a commutative diagram

0 // {V − 1} // s(E, V ) // kH // 0

0 // {V − 1} //

OO

s(E, V ) //

γ

OO

kH // 0

Then γ fixes [E,E]Ep, so in particular V , element-wise. Using the natural

isomorphism V ∼= {V − 1}, we obtain a well-defined action of Aut(kH) on V

by letting α act via a lift α̂. Inner automorphisms lift to inner automorphisms

which act trivially on {V − 1}, so we have indeed an action of Out(kH) on V .

It is immediate that this action, when restricted to Out(H), coincides with

the action of Out(H) defined before.

Proof of Theorem 4.4: We first treat the parametrization of the isomorphism

classes of extensions. Given two isomorphic extensions in F(H), as shown in

(4.7), and any subspace U of V , we have a commutative diagramE ϕ̃ : V
� � // E // // HEϕ : V

88qqqqqqqqqqqqqq� � // E

α̂

>>~~~~~~~~
// // H

α

??��������

Uα̂
� ?

OO

Uα̂
� ?

OO

G̃

ϕ̃

OO

U
� ?

OO

88ppppppppppppp
U
� ?

OO

>>}}}}}}}}
G

ϕ

OO

∼=

??~~~~~~~~

showing that ϕ factors over E/U if and only if ϕ̃ factors over E/Uα̂. Thus α̂

maps obspaceEϕ to obspace E ϕ̃ by Proposition 2.2, and both extensions define

the same Out(H)-orbit of subspaces of V .

Conversely, let U be a subspace of V , and let α ∈ Aut(H), with lift α̂ ∈

Aut(E). Then we have a commutative diagram

1 // V/Uα̂ // E/Uα̂ // H // 1

1 // V/U //

OO

E/U //

OO

H //

α

OO

1

where the vertical map in the middle is induced by α̂. This shows that U and Uα̂

define isomorphic extensions. Thus we have well-defined maps, and it follows

from Lemma 4.2 that they are mutually inverse.
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Next, assume that we are given two extensions in F(H), as shown in (4.6),

which are s-equivalent, as shown in (4.8). Then for any subspace U of V , we

have a commutative diagram

{V − 1} �
� // s(E, V ) // // kH

{V − 1}

::uuuuuuuuu
� � // s(E, V )

α̂

::uuuuuuuuu
// // kH

α

;;wwwwwwwwww

{Uα̂− 1}
� ?

OO

{Uα̂− 1}
� ?

OO

s(G̃, Ã)

ϕ̃

OO

{U − 1}
� ?

OO

::uuuuuuuuu

{U − 1}
� ?

OO

::uuuuuuuuu

s(G,A)

ϕ

OO

∼=

;;xxxxxxxx

Hence ϕ factors over s(E, V )/{U − 1} if and only if ϕ̃ factors over

s(E, V )/{Uα̂− 1}.

Note that a commutative diagram

1 // V/U // E/U // H // 1

G

aaDDDDDDDD
ϕ

OO

affords by (3.2) a commutative diagram

0 // {V−1}
{U−1}

// s(E,V )
{U−1}

// kH // 0

0 // {V/U − 1} //

OO

s(E/U, V/U) //

OO

kH // 0

kG

ffLLLLLLLLLL
ϕ

OO

Since I(kA) is mapped into {V/U − 1} under the diagonal map, I(kA)I(kG) is

contained in the kernel of the diagonal map, and there is an induced commuta-

tive diagram

0 // {V−1}
{U−1}

// s(E,V )
{U−1}

// kH // 0

s(G,A)

ddHHHHHHHHH
ϕ

OO
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The same applies to the homomorphism ϕ̃: G̃ −→ H .

Thus α̂ maps {obspaceEϕ − 1} to {obspace E ϕ̃ − 1} by Corollary 3.2 (whereEϕ is the diagram (4.5), and E ϕ̃ is defined analogously), and both extensions

define the same Out(kH)-orbit of subspaces of V .

Conversely, let U be a subspace of V , and let α ∈ Aut(kH), with lift α̂ ∈

Aut(s(E, V )). By (3.2), we have a commutative diagram

0 // {V/Uα̂− 1} // s(E/Uα̂, V/Uα̂) // kH // 0

0 // {V−1}
{Uα̂−1}

//

OO

s(E,V )
{Uα̂−1}

//

OO

kH // 0

0 // {V−1}
{U−1}

//

OO

s(E,V )
{U−1}

//

OO

kH //

α

OO

0

0 // {V/U − 1} //

OO

s(E/U, V/U) //

OO

kH // 0

where the vertical map in the middle is induced by α̂, and all vertical maps are

isomorphisms. Hence the canonical sequences

1 // V/Uα̂ // E/Uα̂ // H // 1,

1 // V/U // E/U // H // 1

are s-equivalent. Again we have well-defined maps, which are mutually inverse

by Lemma 4.2, and the proof of Theorem 4.4 is complete.

We conclude this section with a couple of remarks.

Remark 4.5: We have shown that any automorphism of kH can be lifted to

an automorphism of s(E, V ). Conversely, any automorphism of s(E, V ) induces

an automorphism of kH by Corollary 3.7. An automorphism of s(E, V ) which

induces the identity of kH is really an automorphism of E which induces the

identity on E/V . For the moment, let X denote the group of all these auto-

morphisms. Any σ in X fixes Φ(E) element-wise (this we noticed already when

proving that the Aut(H)-action on V is well-defined), and gives rise to a ho-

momorphism E −→ V , x 7→ x−1(xσ). In this way, we obtain a homomorphism

X −→ Hom(E/Φ(E), V ), and since conversely any map from Hom(E/Φ(E), V )

gives rise to an automorphism in X , this is an isomorphism (of abelian groups).
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Thus we have an exact sequence

1 −→ Hom(H/Φ(H), V ) −→ Aut(s(E, V )) −→ Aut(kH) −→ 1.

Remark 4.6: Let U ≤ V . The extensions from F(H) which are s-equivalent to

1 −→ V/U −→ E/U −→ H −→ 1

can also be described as follows. We may start from the exact sequence for the

small group ring s(E/U, V/U), with associated exact sequence of unit groups

1 // V/U // s(E/U, V/U)×
κ // (kH)× // 1.

Then the extensions

1 // V/U // κ−1(Hα)
κ // Hα // 1,

α ∈ Aut(kH), yield all isomorphism classes of extensions from F(H) which are

s-equivalent to the above extension.

We shall see in the next section that the middle terms κ−1(Hα) need not be

isomorphic to E/U , which shows that automorphisms of kH in general cannot

be lifted to automorphisms of s(E/U, V/U).

To verify the claim, let α ∈ Aut(kH), with lift α̂ ∈ Aut(s(E, V )). Then we

have an isomorphism

1 // V // Eα̂ // Hα // 1

1 // V //

OO

E //

α̂

OO

H //

α

OO

1

which together with (3.2) shows that we have isomorphisms

1 // V/U // κ−1(Hα)
κ // Hα // 1

1 // V/U // Eα̂/U //

OO

Hα // 1

1 // V/Uα̂−1 //

OO

E/Uα̂−1 //

α̂

OO

H //

α

OO

1

For computational purposes, however, the description of an s-equivalence class

given by Theorem 4.4 is more convenient.
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Remark 4.7: We found Theorem 4.4 while thinking about how the attempt

from [2, 3] might be substantiated, as we will briefly set out. Assume that we

are given an exact sequence in F(H):

1 // A
� � // G

ϕ // H // 1.

Then we have a diagram

0 // {V − 1} // s(E, V ) // kH // 0

kG

ϕ

OO

By Corollary 3.2 and Lemma 4.2, there is a unique minimal ideal I = {U−1} of

s(E, V ) contained in {V−1} such that ϕ factors over s(E, V )/I, and ϕ: G −→ H

does not only factor over E/U (the pre-image of H), but in fact G ∼= E/U .

Assume that we are given another exact sequence in F(H):

1 // Ã
� � // G̃

ϕ̃ // H // 1,

and that G̃ is a group basis of kG. Then, of course, similar remarks hold for the

homomorphism ϕ̃: kG̃ = kG −→ kH . Suppose that Gϕ̃ is a group basis of kH ,

isomorphic to H . Then there is an automorphism α of kH making the following

diagram commutative:

(4.10) kH
α // kH

kG

ϕ

OO

kG̃

ϕ̃

OO

We have seen that α lifts to an automorphism α̂ of s(E, V ), so that we have a

commutative diagram

{V − 1}
� � // s(E, V ) // // kH

{V − 1}
� � //

;;xxxxxxxx

s(E, V )

α̂

<<yyyyyyyy
// // kH

α

CC�������

Iα̂
� ?

OO

Iα̂
� ?

OO

kG̃

ϕ̃

OO

I
� ?

OO

;;wwwwwwwwww
I
� ?

OO

;;xxxxxxxxx
kG

ϕ

OO

�������

�������
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It follows that ϕ̃ factors over s(E, V )/Iα̂ with Iα̂ = {U − 1}α̂ = {Uα̂− 1}, and

that G̃ ∼= E/Uα̂. Since we wish to conclude that G ∼= G̃, we would like to have

the subspace I to be fixed under α̂. One might hope that the action of α̂ can be

compensated by a group automorphism σ of H (which lifts to an automorphism

σ̂ of E, as we have seen): Assuming that Iα̂σ̂−1 = I, we have a commutative

diagram

{V − 1} �
� // s(E, V ) // // kH

{V − 1} �
� //

;;xxxxxxxx

s(E, V ) // //

α̂σ̂−1

<<yyyyyyyy

kH

ασ−1

CC�������

I
� ?

OO

I
� ?

OO

kG̃

ϕ̃σ−1

OO

I
� ?

OO

;;wwwwwwwwwww
I
� ?

OO

;;xxxxxxxxxx
kG

ϕ

OO

�������

�������

and can conclude that ϕ̃σ−1 factors over s(E, V )/I, so that G̃ ∼= E/U ∼= G

(note that E is still the pre-image of G̃ϕ̃σ−1). But it appears that all this is

asked for too much.

5. Röhl’s observation revisited

In this section, we discuss an observation of Röhl [19, 20], thus relating it to

the small group ring, and give, in our setting, a detailed exposition of the main

result in [20]. We keep the notation introduced in Section 4.

Let G denote an arbitrary group.

Definition 5.1: A unipotent automorphism of kG is an augmentation-pre-

serving automorphism of kG which induces the identity on I(kG)/I(kG)2. The

unipotent automorphisms of kG form a normal subgroup UAut(kG) of Aut(kG).

The notion of unipotent automorphism is also meaningful for quotients of kG.

Note that a unipotent automorphism of kG induces the identity on all quotients

I(kG)l/I(kG)l+1 of successive powers of the augmentation ideal.

It is a well-known result in low degree cohomology that I(ZG)/I(ZG)2 ∼=

G/[G,G] (cf. [10, VI, Lemma 4.1]; the isomorphism maps the coset of g − 1 to

the coset of g, for any g ∈ G). Tensoring with k = Fp over Z yields

(5.1) I(kG)/I(kG)2 ∼= G/[G,G]Gp.
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Recall that we are given a finite p-group H together with a presentation (4.1)

and a ‘universal’ extension (4.3). We assume that F is free on a minimal gen-

erating set of H , so that E/[E,E]Ep ∼= F/[F, F ]F p ∼= H/[H,H ]Hp. Combined

with (5.1), this yields

(5.2) I(kE)/I(kE)2 ∼= I(kF )/I(kF )2 ∼= I(kH)/I(kH)2.

Let I denote the image of I(kE) in the small group ring s(E, V ) associated

with the sequence (4.3). We obtain immediately:

Lemma 5.2: Let α ∈ UAut(kH), and let α̂ ∈ Aut(s(E, V )) be a lift as shown in

(4.9). Then α̂ induces the identity on all sections Il/Il+1 (i.e., α̂ is a unipotent

automorphism).

Proof: We have Iα̂ = I since α is augmentation-preserving, and obtain from

(4.9) an induced commutative diagram

I/I2 // I(kH)/I(kH)2

I/I2 //

α̂

OO

I(kH)/I(kH)2

The horizontal maps are the isomorphism arising from (5.2) since I(kV )I(kE) ⊆

I(kE)2 implies that I/I2 ∼= I(kE)/I(kE)2. Hence α̂ is a unipotent automor-

phism.

Recall the definition of the Brauer–Jennings–Zassenhaus series for the group

G (and the fixed prime p) from (3.5) and (3.6). We shall write G[n] =

G/Mn+1(G) for n ≥ 1.

We record two simple lemmas.

Lemma 5.3: Suppose that H = F [n] for some n ≥ 1. Then V = Mn+1(E), so

{V − 1} is contained in In+1 and {V − 1} ∩ In+2 = {Mn+2(E)− 1}.

Proof: By assumption, R = Mn+1(F ), so Mn+1(E) = Mn+1(F )L/L = R/L

= V and the first statement follows. Let U ≤ E be such that {V − 1} ∩ In+2

= {U − 1}. By (3.6), we have U = E ∩ (1 + I(kE)n+2 + I(kV )I(kE)) =

E ∩ (1 + I(kE)n+2) = Mn+2(E), whence the second statement.

Next, we have (cf. [20, Theorem 3.2.1]):
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Lemma 5.4: Suppose that H = F [n] for some n ≥ 1. Then for every m > n,

Aut(kH/I(kH)m) = Aut(H) ·UAut(kH/I(kH)m).

Proof: First, note that the statement makes sense since by (3.6), H embeds

into kH/I(kH)m, and therefore Aut(H) embeds into Aut(kH/I(kH)m).

Let α ∈ Aut(kH/I(kH)m). Taking augmentation is a homomorphism, so

α is augmentation-preserving since H is a p-group. Hence α induces an au-

tomorphism of the abelian group I(kH)/I(kH)2, which by (5.1) is canonically

isomorphic to H/M2(H). Thus, it suffices to show that any automorphism β of

H/M2(H) can be lifted to an automorphism of H . By the universal property

of F , we obtain a homomorphism ϕ: F −→ H making the following diagram

commute:

F
ϕ //______

����

H

����
H/M2(H)

β // H/M2(H)

Then H = 〈Fϕ,M2(H)〉 = 〈Fϕ,Φ(H)〉 = Fϕ (see [17, 5.2.12]). Since Mn+1(F )

is the kernel of any surjection F −→ H = F [n], we are done.

Corollary 5.5: Suppose that H = F [n] for some n ≥ 1. Let α ∈ Aut(kH),

and let α̂ ∈ Aut(s(E, V )) be a lift as shown in (4.9). Then α̂ fixes {Mn+2(E)−1},

and acts on {V − 1}/{Mn+2(E)− 1} just like an automorphism of E.

Proof: By Lemma 5.4, Aut(kH) = Aut(H) ·UAut(kH). From the description

of {Mn+2(E) − 1} given in Lemma 5.3 it follows that α̂ fixes {Mn+2(E)− 1}.

Recall from the definition of the action of Out(kH) on V in Section 4 that if

α ∈ Aut(H), then α actually can be lifted to an automorphism of E which acts

on V just like the given lift α̂.

Thus we can assume that α is a unipotent automorphism. Then α̂

is a unipotent automorphism by Lemma 5.2, whence acts trivially on

{V − 1}/{Mn+2(E)− 1} by Lemma 5.3. The corollary is proved.

From now on, we let H = F [n] for some n ≥ 1. Writing Fi = Mi(F ), we then

have R = Fn+1, so L = [F,R]Rp ≤ Fn+2 by (3.5) and Mn+2(E) = Fn+2/L.

Setting Ē = E/Mn+2(E), we have a central extension in F(H):

1 // Fn+1/Fn+2
// F [n+1] // F [n] // 1Ē : 1 // V̄ // Ē // H // 1
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For the moment, let us denote by F[n] the collection of all exact sequences (4.4)

in F(H) such that Mn+2(G) = 1.

If (4.4) is a sequence in F[n] , with associated diagram Eϕ as shown in (4.5),

then Mn+2(E) ≤ obspace Eϕ by Lemma 4.2, and we may replace in the for-

mulation of Lemma 4.2 the diagram Eϕ by the diagram Ēϕ . Moreover, the

action of Out(kH) on V gives rise to an action of Out(kH) on V̄ which is really

an Out(H)-action, as we have seen in Corollary 5.5. Following the proof of

Theorem 4.4, we obtain mutatis mutandis:

Proposition 5.6: With the notation as above, the following classes are in

natural bijection:

• the isomorphism classes of extensions in F[n] ;

• the Out(H)-orbits of subspaces of V̄ ;

• the s-equivalence classes of extensions in F[n] .

Assume that we are given two exact sequences (4.6) in F[n] . These sequences

are isomorphic if and only if the middle terms G and G̃ are isomorphic since

A = Mn+1(G) and Ã = Mn+1(G̃). Recall from Corollary 3.7 that s-equivalence

means isomorphism of small group rings. Thus we have shown that if the small

group rings s(G,Mn+1(G)) and s(G̃,Mn+1(G̃)) are isomorphic, then the groups

G and G̃ are isomorphic. However, as yet we do not know whether the small

group rings are isomorphic provided that the group algebras kG and kG̃ are

isomorphic.

If kG = kG̃, we also do not know whether we have a commutative diagram

(4.10) at our disposal, so we cannot compare “obstructions” using the small

group ring, but in the present case one can use the following simple observation.

Lemma 5.7: Suppose that G and G̃ are two finite groups such that G[n] ∼= G̃[n]

for some n ≥ 1, and that there is an isomorphism θ: kG/I(kG)m −→ kG̃/I(kG̃)m

for some m > n + 1 which maps I(kG)/I(kG)m onto I(kG̃)/I(kG̃)m. Set Q =

G[n], and identify Q with its isomorphic image in kQ/I(kQ)n+1. Then there is

a commutative diagram

kQ/I(kQ)n+1 α // kQ/I(kQ)n+1

kG/I(kG)m
θ //

ϕ

OO

kG̃/I(kG̃)m

ϕ̃

OO

such that Gϕ = Q = G̃ϕ̃, and α is an isomorphism.
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Suppose further that m = n+ 2, and that α is induced by an automorphism

of Q. Then there exists an isomorphism G[n+1] −→ G̃[n+1] which induces α.

Proof: Note that for any group X , we have a canonical isomorphism

kX/I(kX)n+1 ∼= kX [n]/I(kX [n])n+1.

Indeed, the kernel of the composition kX −→ kX [n] −→ kX [n]/I(kX [n])n+1 is

I(kX)n+1+I(kMn+1(X))kX , and by (3.6), I(kMn+1(X)) ⊆ I(kX)n+1. The map

ϕ above is the composition of the quotient map kG/I(kG)m −→ kG/I(kG)n+1

and this canonical isomorphism, and ϕ̃ is the composition of the similarly defined

map kG̃/I(kG̃)m −→ kG̃[n]/I(kG̃[n])n+1 and an isomorphism arising from an

isomorphism G̃[n] ∼= Q.

The kernel of both ϕ and θϕ̃ is I(kG)n+1/I(kG)m, so that there is an isomor-

phism α making the above diagram commutative.

Now suppose further that m = n+ 2 and Qα = Q. By definition (3.4) of the

Zassenhaus ideals, θ maps Hn+1(kG)/I(kG)n+2 onto Hn+1(kG̃)/I(kG̃)n+2. By

(3.7) and (3.6), these quotients are naturally isomorphic to Mn+1(G)/Mn+2(G)

and Mn+1(G̃)/Mn+2(G̃), respectively. In particular, G[n+1] and G̃[n+1] have

the same order. Choose a subspace C of kG̃ with I(kG̃)n+2 ≤ C ≤

I(kG̃)n+1 such that C/I(kG̃)n+2 is a complement to Hn+1(kG̃)/I(kG̃)n+2 in

I(kG̃)n+1/I(kG̃)n+2. Note that C is an ideal of kG̃, and that ϕ̃ factors over

kG̃/C. Identify the image of G in kG/I(kG)n+2 with G[n+1], and the image

of G̃ in kG̃/I(kG̃)n+2 or kG̃/C with G̃[n+1]. Then G[n+1]θ embeds into kG̃/C

since

(G[n+1]θ − 1) ∩ I(kG̃)n+1/I(kG̃)n+2 = Hn+1(kG̃)/I(kG̃)n+2.

Also G[n+1]θϕ̃ = Q by assumption, and the pre-image of Q in (kG̃/C)× is

G̃[n+1]. It follows that G[n+1] maps onto G̃[n+1] in kG̃/C, which yields the

desired isomorphism.

Röhl’s result is slightly stronger than the above proposition. In the end, we

shall give another proof thereof, which in particular avoids induction on n, and

shows that there is no need for replacing kF by a (completed) inverse limit of

its quotients by powers of the augmentation ideal.

Note that by (3.7), the assumption Mn+2(G̃) = 1 in the following theorem is

automatically fullfilled if kG ∼= kG̃.

Theorem 5.8 ([20, Theorem 3.1.2]): Let Mn+2(F ) ≤ U ≤ Mn+1(F ) for some

n ≥ 1, and set G = F/U . Then kG/I(kG)n+2 ∼= kG̃/I(kG̃)n+2 for a group G̃

with Mn+2(G̃) = 1 implies G ∼= G̃.
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Proof: Our assumption on G is that G[n] = F [n] = H and Mn+2(G) = 1.

Let θ: kG/I(kG)n+2 −→ kG̃/I(kG̃)n+2 be an isomorphism, and let X denote

either G or G̃. Note that since X is a p-group, I(kX)/I(kX)n+2 is the radical

of kX/I(kX)n+2.

By (3.7) and (3.6), the elementary abelian quotient Mi(X)/Mi+1(X) is iso-

morphic to the image of the Zassenhaus ideal Hi(kX) in kX/I(kX)i+1, and by

the definition (3.4) of the Zassenhaus ideals, these images are determined by

the ring kX/I(kX)n+2 as long as i ≤ n + 1. Therefore Mi(G)/Mi+1(G) and

Mi(G̃)/Mi+1(G̃) are isomorphic for i ≤ n + 1. In particular, |G| = |G̃|. More-

over, G̃[n] ∼= H as any group X with Mn+1(X) = 1 and X/M2(X) ∼= G/M2(G)

is a homomorphic image of H .

Thus by Lemma 5.7, we have a commutative diagram

kH/I(kH)n+1 α // kH/I(kH)n+1

kG/I(kG)n+2 θ //

ϕ

OO

kG̃/I(kG̃)n+2

ϕ̃

OO

with Gϕ = H = G̃ϕ̃. By Lemma 5.4, we may assume, possibly after modifying ϕ̃

with an automorphism induced by an automorphism of H , that α is unipotent.

The kernel of the natural map kE −→ kH/I(kH)n+1 is I(kE)n+1 +I(kV )kE,

and by Lemma 5.3, we have V = Mn+1(E) and I(kV )kE ⊆ I(kE)n+1. Thus we

have an exact sequence 0 −→ I(kE)n+1 −→ kE −→ kH/I(kH)n+1 −→ 0 from

which we obtain the exact sequence

0 // I(kE)n+1/I(kE)n+2 // kE/I(kE)n+2 τ // kH/I(kH)n+1 // 0

0 // J // A
τ // A/J // 0

Let σ: kF/I(kF )n+2 −→ kE/I(kE)n+2 be the map induced by the natu-

ral map kF −→ kE = kF/L, and note that the kernel of σ is I(kL)kF +

I(kF )n+2/I(kF )n+2. As σ is surjective on units, the universal property of F

provides us with a commutative diagram

kF/I(kF )n+2 σ // kE/I(kE)n+2 τ // kH/I(kH)n+1

kF/I(kF )n+2 σ //

β

OO

kE/I(kE)n+2 τ // kH/I(kH)n+1

α

OO
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where β is unipotent by (5.2). Let π: kF −→ kF/I(kF )n+2 be the natural

map. By commutativity, Rπβσ maps to 1 under τ , so Rπβσ is contained in

1 + I(kE)n+1/I(kE)n+2, an elementary abelian central p-group in the units of

kE/I(kE)n+2. As L = [F,R]Rp, it follows that Lπβσ = 1, which means that β

stabilizes the kernel of σ. Hence there is an induced commutative diagram

0 // J // A // A/J // 0

0 // J // A //

α̂

OO

A/J //

α

OO

0

(α̂ induces the identity on J = I(kE)n+1/I(kE)n+2 since α̂ is unipotent, too).

Choose a subspaceK of J which is a complement to the image of I(kMn+1(E))

in J . Then K is an ideal of A, and the image of E in A/K is Ē = E/Mn+2(E).

Moreover, J/K ∼= {Mn+1(E)/Mn+2(E)− 1} = {V̄ − 1} by Lemma 5.3, so that

1 // 1 + J/K // τ−1(H)/K // H // 1

1 // V̄ // Ē // H // 1

Altogether, we obtain a commutative diagram of the form

J/K
� � // A/K // // A/J

J/K � � //

zzzzz
zzzzz

A/K // //

<<yyyyy

A/J

99rrrrrrr

kG̃
I(kG̃)n+2

ϕ̃

OO

kG
I(kG)n+2

ϕ

OO

θ

::vvvvvv

The ideals of A/K contained in J/K are in one-to-one correspondence with

the subgroups of Ē contained in V̄ , with an ideal I corresponding to the sub-

group 1 + I. Let I be an ideal of A/K contained in J/K. The commutative

diagram above shows that the existence of one commutative diagram of the
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form

Ē
1+I

// H

G

\\:::::::
ϕ,

OO
A/K
I

// A/J

kG
I(kG)n+2

aaBBBBBBBB
ϕ,

OO
A/K
I

// A/J

kG̃
I(kG̃)n+2

``AAAAAAAA
ϕ̃

OO
or Ē

1+I
// H

G̃

\\9999999
ϕ̃

OO

implies the existence of all of them. By assumption, G ∼= Ē/Ū , and there is a

commutative diagram

Ē/Ū // H

G

aaCCCCCCCC
ϕ

OO

As we have seen, this implies the existence of a commutative diagram

1 // V̄ /Ū // Ē/Ū // H // 1

G̃

aaCCCCCCCC
ϕ̃

OO

Since V̄ /Ū ≤ Φ(Ē/Ū), and ϕ̃ is surjective, the diagonal map is surjective, too,

and as |G| = |G̃|, it follows that G ∼= Ē/Ū ∼= G̃, and the theorem is proved.

Corollary 5.9: Let Mn+2(F ) ≤ U ≤ Mn+1(F ) for some n ≥ 1, and set

G = F/U . Then Aut(kG) = Aut(G) · UAut(kG).

Proof: We have G[n] = F [n] = H and Mn+2(G) = 1. Suppose that α is a

unipotent automorphism of kH/I(kH)n+1. As in the proof of Theorem 5.8, we

then obtain a unipotent lift α̂, as shown below.

0 // I(kE)n+1/I(kE)n+2 // kE/I(kE)n+2 // kH/I(kH)n+1 // 0

0 // I(kE)n+1/I(kE)n+2 // kE/I(kE)n+2 //

α̂

OO

kH/I(kH)n+1 //

α

OO

0

Note that G = F/U = (F/L)/(U/L) = E/(U/L). The kernel of the natural

map kE −→ kG/I(kG)n+2 is I(kE)n+2 + I(kU/L)kE, and as U ≤ Mn+1(F ),

the kernel of the natural map kE/I(kE)n+2 −→ kG/I(kG)n+2 is contained in
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I(kE)n+1/I(kE)n+2. It follows that α can be lifted to a unipotent automorphism

of kG/I(kG)n+2.

Now let θ ∈ Aut(kG), and denote the induced automorphism of kG/I(kG)n+2

also by θ. By Lemma 5.7, we have a commutative diagram

kH/I(kH)n+1 α // kH/I(kH)n+1

kG/I(kG)n+2 θ //

OO

kG/I(kG)n+2

OO

where α is an isomorphism, and the vertical maps are the natural ones. By

Lemma 5.4, α is the product of a unipotent automorphism and a group auto-

morphism of H . We have just seen that the unipotent automorphism can be

lifted to a unipotent automorphism of kG/I(kG)n+2, and therefore the group au-

tomorphism of H can be lifted to a group automorphism σ of G, by Lemma 5.7.

It follows that θσ−1 is a unipotent automorphism of kG, and the proof is com-

plete.

6. First examples

Throughout this section we stick to the notation introduced in Section 4. More-

over, the reader should be aware of the notion of unipotent automorphisms (cf.

Definition 5.1).

Still, p denotes a (fixed) prime number and k the field with p elements.

Example 6.1 (Cyclic groups): It is certainly instructive to start by considering

cyclic groups, so let H = Cpn = 〈xn〉 be a cyclic group of order pn for some

n ∈ N. The obvious presentation with F = 〈x〉, R = 〈xp
n

〉 and surjection

F −→ H defined by x 7→ xn gives rise to the following ‘universal’ central Frattini

extension where L = Rp = 〈xp
n+1

〉, E = F/L = 〈xn+1〉, V = R/L = 〈xp
n

n+1〉

and π is defined by xn+1 7→ xn:E : 1 // V
� � // E

π // H // 1

1 // Cp
� � //

∼=

OO

Cpn+1 // Cpn // 1

The substitution X 7→ xn − 1 induces a k-algebra isomorphism between kH

and the truncated polynomial ring k[X̄] = k[X ]/(Xpn

), which identifies the

radical I(kH) with the ideal generated by X̄ = X̄n = X + (Xpn

). Therewith,
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the ideal I(kV ) = 〈xp
n

n+1 − 1〉 = 〈(xn+1 − 1)p
n

〉 within kE is identified with

(X̄pn

n+1) and the small group ring is nothing but a truncated polynomial ring

again,

s(E, V ) =
kE

I(kV )I(kE)
∼=

k[X ]

(Xpn+1)
.

Note that {V − 1} corresponds to the ideal (X̄pn

).

Any automorphism of the group algebra k[X̄n] is induced from a substitution

X̄n 7→ λX̄n + r with λ ∈ k× and r ∈ (X̄2
n). The unipotent automorphisms are

precisely the maps arising from substitutions with λ = 1, whereas the maps

arising from substitutions with r = 0 constitute a subgroup S isomorphic to k×

which complements the group UAut(k[X̄n]) of unipotent automorphisms. Thus,

Aut(k[X̄n]) ∼= UAut(k[X̄n])ok×. Any automorphism of H can be described by

xn 7→ xβn for some β ∈ N relatively prime to p, and gives rise to the substitution

X̄n = (X̄n + 1)− 1 7−→ (X̄n + 1)β − 1 =

β∑

i=1

(
β

i

)
X̄ i
n ∈ βX̄n + (X̄2

n)

which can always be compensated by a map from S to obtain a unipotent

automorphism. Thus, we see directly that Aut(kH) = Aut(H) ·UAut(kH).

Unipotent automorphisms of s(E, V ), arising from substitutions X 7→ X + r
with r ∈ (X2), induce the identity on {V − 1}:

Xpn

7−→ (X + r)pn

= Xpn

+ rpn

∈ Xpn

+ (Xpn+1).

On the other hand, decomposing any group automorphism along S ·UAut(k[X̄ ])

shows that Aut(H) acts just as k× on {V − 1}:

Xpn

7−→ (λX)p
n

= λp
n

Xpn

= λ ·Xpn

for λ ∈ k×.

Note that Out(kH) = Aut(kH) and Out(H) = Aut(H) sinceH is abelian. Thus

the actions of Out(kH) and Out(H) coincide, and correspond to multiplication

with field elements from k× on the 1-dimensional space {V − 1}. This obser-

vation (with n = 1) will be useful in the following example when considering

diagonal matrices.

Example 6.2 (Elementary abelian groups): Let H ∼= Crp be an elementary

abelian p-group of rank r ≥ 2 (the case r = 1 is included in Example 6.1). We

choose the obvious presentation for H with free group F = 〈x1, . . . , xr〉 and

relations

R = 〈xpi , [xi, xj ] | 1 ≤ i, j ≤ r, i < j〉.
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The ‘universal’ central Frattini extension with quotient group H is given by

E = F/L where L = [F,R]Rp. We set x̄i := xiR ∈ H and x̂i := xiL ∈ E.

Observe that the rank of V is precisely r+
(
r
2

)
, with a minimal set of generators

given by {x̂pi , [x̂i, x̂j ]| 1 ≤ i, j ≤ r, i < j}.

If we want to parametrize the isomorphism and s-equivalence classes of ex-

tensions in F(H) then, by Theorem 4.4, we have to understand the action of

Out(kH) on V . Note that R = [F, F ]F p = M2(F ), so H = F [1] in the notation

from Section 5, and we have a factorization Aut(kH) = Aut(H) · UAut(kH),

by Lemma 5.4.

First we are going to show that the group of unipotent automorphisms

UAut(kH) acts trivially on V . Therefore, the actions of Out(kH) and Out(H)

on V coincide, implying that isomorphism classes in F(H) are in fact s-

equivalence classes. Note that only for the prime p = 2 we have L = M3(F )

and, thus, M3(E) = 1, so we cannot deduce from Corollary 5.5 the trivial action

of unipotent automorphisms.

The key equation implying the trivial action of unipotent automorphisms is

the following:

(6.1)

x̂i(x̂j − 1)− (x̂j − 1)x̂i = (x̂i − 1)(x̂j − 1)− (x̂j − 1)(x̂i − 1)

= x̂ix̂j − x̂j x̂i

= −x̂ix̂j([x̂j , x̂i]− 1) ∈ I(kV )kE.

Therefore, we have modulo I(kV )I(kE) that

(6.2)
x̂i(x̂l − 1) · · · (x̂m − 1) ≡ (x̂l − 1)x̂i · · · (x̂m − 1)

≡ · · · ≡ (x̂l − 1) · · · (x̂m − 1)x̂i,

showing that the image of x̂i in the small group ring s(E, V ) commutes with all

monomials of degree ≥ 2 in the images of the x̂j − 1 (which generate the square

of the radical). This immediately implies that modulo I(kV )I(kE), we have

(6.3) ((x̂i − 1)(x̂j − 1))p ≡ (x̂i − 1)p(x̂j − 1)p = (x̂pi − 1)(x̂j − 1)p ≡ 0.

By slight abuse of notation, we denote the image of x̂i in s(E, V ) again by

x̂i. Let α ∈ UAut(kH), and consider a lift α̂ ∈ Aut(s(E, V )), which can be

described by

x̂iα̂ = x̂i + ri,
where ri ∈ I(kE)2/I(kV )I(kE). Combining Equations (6.2) and (6.3) we obtain

x̂pi α̂ = (x̂i + ri)p = x̂pi + rpi = x̂pi .
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Using again the commutation relation (6.2), we can check directly that α̂ fixes

the element (x̂i − 1)(x̂j − 1) − (x̂j − 1)(x̂i − 1). Since by (6.1), the additive

commutator (x̂i−1)(x̂j−1)− (x̂j−1)(x̂i−1) and [x̂i, x̂j ]−1 represent the same

element in s(E, V ), we see that α̂ fixes the elements of a minimal generating set

of V . Thus α acts trivially, as we wished to show.

Note that Out(H) = Aut(H) ∼= GLr(k): A matrix A = (aij)
r
i,j=1 ∈ GLr(k)

corresponds to the automorphism αA of H given by x̄i 7→
∏r
j=1 x̄

aij

j . The

obvious lift xi 7→
∏r
j=1 x

aij

j of αA to F induces a lift α̂A ∈ Aut(E) leaving V

invariant, thus giving rise to the GLr(k)-action under consideration. Next, we

determine the action of Aut(H) on V , i.e., the structure of V as GLr(k)-module.

Let W = kr be the natural GLr(k)-module with canonical basis {wi| 1 ≤ i ≤ r}.

First, we note that the subgroup T of V generated by the commutators [x̂i, x̂j ]

for i < j is a GLr(k)-submodule. Since the group GLr(k) is generated by

elementary and diagonal matrices, it is enough to consider A =
(
a
c
b
d

)
∈ GL2(k).

Using basic commutator relations (see [11, Chapter III, (1.2)]), and the definition

of L, we obtain

[x̂i, x̂j ]α̂A = [x̂ai x̂
b
j , x̂

c
i x̂
d
j ] = [x̂ai x̂

b
j , x̂

d
j ] · [x̂

a
i x̂

b
j , x̂

c
i ]

= [x̂ai , x̂
d
j ] · [x̂

b
j , x̂

c
i ] = [x̂i, x̂j ]

ad · [x̂j , x̂i]
bc

= [x̂i, x̂j ]
ad−bc = [x̂i, x̂j ]

det(A).

This shows, in addition, that wi ∧ wj 7→ [x̂i, x̂j ] (i < j) defines a GLr(k)-

isomorphism between
∧2

W and T . Observing that E is a nilpotent group of

class 2 and making use of [11, Chapter III, (1.3)], we obtain the action of the

matrix A on the missing generators x̂pi (1 ≤ i ≤ r) of V :

x̂pi α̂A = (x̂ai x̂
b
j)
p

= (x̂ai )
p(x̂bj)

p[x̂bj , x̂
a
i ]

(p

2)

=

{
(x̂pi )

a(x̂pj )
b for p odd,

(x̂pi )
a(x̂pj )

b · [x̂i, x̂j ]
ab for p = 2.

Thus, in any case, V/T is isomorphic to W as GLr(k)-module, an isomorphism

being given by wi 7→ x̂pi T . So we have a short exact sequence of GLr(k)-modulesEr : 0 −→
2∧
W −→ V −→ W −→ 0,

the sequence being split for odd primes p.

Let p = 2, and write more clearly Vr = V . The sequence E2 turns out to be

split by sort of an accident: generators of GL2(F2 ) (isomorphic to the symmetric
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group on 3 letters) act on V2 via the matrices
(

1 1 1
0 1 0
0 0 1

)
and

(
0 1 0
1 0 0
0 0 1

)
, which can

be conjugated into block diagonal form by
(

1 0 1
0 1 1
0 0 1

)
. But Er for r ≥ 3 is a

non-split extension of GLr(k)-modules: For r = 3, this can be shown by direct

inspection, and for r > 3, this can be deduced inductively, just noting that

the restriction of the GLr(k)-module Vr to GLr−1(k) = StabGLr(k)(wr) splits

according to (in suggestive notation)

Vr|GLr−1(k) = Vr−1 ⊕ (Vr−1 ∧ wr)⊕ kwr.

Therefore, a splitting of Er would induce a splitting of Er−1 , which is impossible

by the induction hypothesis.

Summarizing, we have reduced the parametrization of s-equivalence (=iso-

morphism) classes of central Frattini extensions with elementary abelian factor

p-group of rank r and middle group of order p2r+(r

2)−d to the combinatorial

determination of GLr(k)-orbits of d-dimensional subspaces of the (r +
(
r
2

)
)-

dimensional GLr(k)-module Vr from the sequence Er .
Example 6.3 (Non-isomorphic groups with isomorphic small group rings): In

the last example we consider a case where the action of Out(kH) on V is strictly

larger than the action of Out(H). Let H = D8 be the dihedral group of order

8 as given by the Coxeter presentation, i.e.,

H ∼= F/R = 〈a, b | a2, b2, (ab)4〉.

Thus, ā = aR and b̄ = bR can be interpreted as (simple) reflections in Euclidean

space R2 generating the group of symmetries of a square.

We will omit most of the calculations, which anyway can easily be reproduced

— if not by hand, then at least with the aid of a computing system like GAP

(cf. [7]). For convenience, we shall use the numbering of isomorphism classes of

groups of small order as established in the Small Groups library embedded in

GAP.

Let L = [F,R]R2 and set E = F/L and V = R/L. The three relators from

R give rise to a minimal generating set for V , i.e., setting â = aL and b̂ = bL,

we can identify the canonical basis of F3
2 with the (ordered) set {â2, b̂2, (âb̂)4} ⊂

V ∼= C3
2 . We shall make explicit use of this identification when representing

group actions on V by matrices in GL3(F2 ).

We want to parametrize the isomorphism and s-equivalence classes of exten-

sions in F(H). By Theorem 4.4, this amounts to computing the homomorphism

Out(F2H) −→ GL(V ) and its restriction to Out(H) (as outlined in the proof
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of Theorem 4.4) and studying the induced action on the set of subspaces of V .

Note that M3(H) = 1, i.e., H has M-length ≤ 2. Finite p-groups G with M-

length ≤ 2 have a normal complement in the normalized unit group of kG (see

[14, Corollary 7]), a fact that readily implies that group ring automorphisms of

kG can be written as the product of a group automorphism and a unipotent

automorphism. Thus Aut(F2H) = Aut(H) ·UAut(F2H), and we compute both

factors separately.

The symmetry of the Coxeter presentation shows that switching the two gen-

erators ā and b̄ induces an automorphism σ of H . In fact, this automorphism

provides a generator of Out(H), which is a cyclic group of order two. To de-

scribe its action on V , we lift σ to the automorphism of F which switches the

free generators a and b. Then, σ induces a lifting automorphism σ̂ of E which

acts on V by â2σ̂ = b̂2, b̂2σ̂ = â2 and

(âb̂)4σ̂ = (b̂â)4 = â3 · â · (b̂â)4 = â3(âb̂)4â

= â3 · â · (âb̂)4 · [(âb̂)4, â] = â4 · (âb̂)4

= (âb̂)4.

Thus, the action of a generator of Out(H) on V is determined by the permuta-

tion matrix X =
(

0 1 0
1 0 0
0 0 1

)
.

We set Ā = ā− 1 and B̄ = b̄− 1. These elements generate the radical I(F2H)

of the group ring F2H . The elements of the group UAut(F2H) can be compactly

described by

ā 7→ ā+ sa + ta, b̄ 7→ b̄+ sb + tb,

where sa, sb ∈ {0, ĀB̄ + B̄Ā}, and ta and tb are arbitrary elements of I(F2G)3.

This gives a total of 28 unipotent automorphisms. The automorphisms τ and υ

determined by letting

τ : sa = ĀB̄ + B̄Ā, sb = ta = tb = 0,

υ: sb = ĀB̄ + B̄Ā, sa = ta = tb = 0,

act on V — via liftings to automorphisms of Aut(s(E, V )) — by multiplication

with the matrices Y =
(

1 0 1
0 1 0
0 0 1

)
and Z =

(
1 0 0
0 1 1
0 0 1

)
, respectively. The action of

〈Y, Z〉 already gives the full action of UAut(F2H) on V . Thus, the action of

Out(F2H) on V is determined by the matrix group

〈X,Y, Z〉 = 〈Y, Z〉o 〈X〉 ∼= (C2 × C2)o C2
∼= D8,

with Out(H) corresponding to the subgroup 〈X〉.
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The 2-dimensional subspaces of F3
2 can be parametrized by all 2× 3 matrices

over F2 in reduced row-echelon form (cf. [12, p. 14]). There are seven of these:

M1 =
(

1 0 0
0 1 0

)
,M2a =

(
1 0 1
0 1 0

)
,M2b =

(
1 0 0
0 1 1

)
,M3 =

(
1 0 1
0 1 1

)
,

M4a =
(

1 0 0
0 0 1

)
,M5 =

(
1 1 0
0 0 1

)
,M4b =

(
0 1 0
0 0 1

)
.

To each of these matrices Mi one associates an elementary abelian subgroup

Ui of V of rank 2: For example, U2b = 〈â2, b̂2 · (âb̂)4〉. The action of Out(H)

on the 2-dimensional subspaces can be computed by calculating the reduced

row-echelon form of Mi ·X . It turns out that there are five orbits,

O1 = {M1}, O2 = {M2a,M2b}, O3 = {M3},

O4 = {M4a,M4b} and O5 = {M5},

which correspond to the isomorphism classes of central Frattini extensions inF(H) with middle group of order 16, with representatives given byE i : 1 −→ V/Ui −→ E/Ui −→ H −→ 1.

Set Ei = E/Ui. The groups E1, . . . , E5 are pairwise non-isomorphic, with

E1 of dihedral, E2 of semi-dihedral and E3 of quaternion type. But the se-

quences E1 , E2 and E3 are s-equivalent, and therefore their small group rings

s(E/Ui, V/Ui) are isomorphic, as one easily sees from the action of Y : we have

M1
Y
←→M2a and M2b

Y
←→M3. (It should be remarked that the series of di-

hedral, semi-dihedral and generalized quaternion groups are nevertheless de-

termined by their modular group rings (cf. [4, §2]).) It turns out that the

Out(H)-orbits O4 and O5 are already Out(F2H)-orbits.

The same kind of reasoning applied to vectors from F3
2 \ {0} yields the iso-

morphism and s-equivalence classes in F(H) with middle group of order 32.

There are again 5 isomorphism classes of such extensions (due to the fact that

X = X−t), with representing vectors

v9 = (1 0 0), v10 = (1 0 1), v2 = (0 0 1), v14 = (1 1 0), v13 = (1 1 1).

Here, the index i ∈ {2, 9, 10, 13, 14} corresponds to the number of the isomor-

phism class of the middle group Gi provided by the Small Groups library in

GAP (cf. [7]). For example, we have an extensionG 9 : 1 −→ V/〈â2〉 −→ E/〈â2〉 −→ H −→ 1

with middle group G9 = E/〈â2〉. Again, all middle groups of the sequencesG i are pairwise non-isomorphic. None of these is of dihedral, semi-dihedral or



Vol. 157, 2007 PARAMETRIZATION OF CENTRAL FRATTINI EXTENSIONS 101

quaternion type. This time the classes of G 9 and G 10 as well as the classes ofG 13 and G 14 are merged into one s-equivalence class, giving rise to two pairs of

non-isomorphic central Frattini extensions with isomorphic corresponding small

group ring sequences.
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